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Abstract 

Mesh deformation is of great importance to the numerical 
simulation of unsteady computational fluids involving moving 
boundaries. The Inverse Distance Weighting (IDW) method is a 
simple and direct interpolation approach for mesh deformation. 
The method has two exponential factors respectively on the 
translation and rotation terms, which significantly affect the 
deformation performance, but are usually determined by trials. 
We investigate the optimal parameters of the IDW method from 
two-dimensional numerical simulations with different mesh types, 
boundary shapes and deformation patterns. The results 
demonstrate that the optimal parameters are independent of mesh 
type and boundary shape, but are related to deformation pattern. 
The optimal factor of the translation term is in the range of [1, 2] 
for both rotational and translational movements, while the 
optimal factor of the rotation term is 2 for rotational movements, 
and tends to infinity for translational movements which means 
the rotation term can be neglected. These results should be 
guidance to the parameter selection in the IDW method, and is 
therefore very important to the performance of the IDW method. 
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Introduction  

Numerical simulations involving moving boundaries require a 
computational mesh moving together with boundary shapes, such 
as the fluid-structure interaction, aeroelastic computation and 
aerodynamic shape optimization. Mesh regeneration and 
interpolation operation of unstructured meshes are relatively 
expensive on computational cost. Therefore, mesh deformation 
methods have been widely used to adapt a computational mesh to 
a new displaced boundary without changing mesh connectivity. 
Various mesh deformation approaches found in literature can be 
generally sorted into the partial differential equation (PDE) 
method [1,2], physical analogy technique [3,4], algebraic method 
[5,6] and their combinations [7]. 

The PDE method is popular in mesh smoothing and simple to 
implement, but the mesh deformation ability of the method is 
quite limited. The physical analogy is the most prevalent 
deformation method for its physical foundation and general 
robustness, except it is computationally expensive. The algebraic 
techniques simply define the movement of gird nodes as a 
function of boundary motions, which compute the displacement 
of a volume node (the mesh node located in the computational 
domain except the boundaries) by its relative position from the 
boundaries of the computational domain. Recently, algebraic 
methods have been developed rapidly for their high efficiency 
and easy implementation, and can be classified into the Delaunay 
interpolation [8], the radial basis function interpolation [9,10] and 
the methods based on inverse distance weighting interpolation 
(IDW) [11]. The Delaunay interpolation method is based on the 
Delaunay mesh connecting boundary nodes, which is efficient 
but only effective for convex moving boundaries. The 

interpolation method of the radial basis function (RBF) is based 
on nodes rather than on meshes, and can be easily implemented 
in parallel [12]. However, an equation system with the scale of 
boundary nodes needs to be solved and different radial basis 
functions should be adopted in different applications. Moreover, 
some novel mesh deformation method have been developed in 
recent years, the sphere relaxation algorithm have been 
introduced to improve the deformed mesh quality of the 
boundary mesh [13]. 

The IDW method is a weighted average interpolation technique 
of scattered data points, which has been widely applied in 
computational graphics and geoscience for its high efficiency, 
simple implementation and parallelization. Lu [14] presented an 
adaptive IDW approach to further improve the performance. The 
explicit mesh deformation method based on the IDW was 
developed by Melville [15] and Allen [16], which is an 
interpolation using inverse distance weighting factors. The IDW 
method treats the deformation of a volume mesh as a projection 
of the displacement from boundaries into the volume mesh, 
which is also a node based method without considering the 
connectivity of elements. Moreover, the IDW method keeps the 
elements near deforming boundary (boundary mesh) move 
together with the boundary, which preserves high mesh quality 
near boundaries. The IDW method has attracted lots of attentions 
in recent years. McDaniel [17] applied a hybrid version of the 
methods developed by Melville and Allen to guarantee the 
quality of viscous meshes. Witteveen [18,19] used the IDW 
interpolation as a mesh optimization method to improve the 
orthogonality of the element adjacent to boundary structures. 
Luke [20] presented a tree-code optimization of the IDW to 
maintain the orthogonality of the boundary layer in viscous 
meshes and improve the algorithm efficiency. 

Inverse Distance Weighting Method 

The mesh deformation method based on the IDW has two basic 
forms. The first one [21] defined the displacement of a volume 
node as the weighted average of all boundary node displacements, 
which is simple and direct. 
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where ui and uj are the displacements of volume node i and j, 
respectively. Nd is the number of boundary nodes, wj(rij) is the 
weighting factor which refers to the inverse distance from node i 
to node j and rij is the distance from node i to node j. However, 
the form of the IDW method requires a summation over all 
boundary nodes for each volume node, which makes the method 
inefficient for large scale meshes [22]. Furthermore, 
improvements are needed to guarantee the mesh quality for 
irregular and complicated mesh deformations.  
 
The second form of the IDW method developed by Allen [23] 
treated the displacement of a volume node as a combination of 
the translation and rotation derived from the displacements of 



some reference nodes on boundaries, usually the closest nodes 
are chosen. The displacement of a volume node in the deformed 
mesh is given as following [15], which refers to one deformed or 
moving boundary (there may be many boundaries),  
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where T

iu , R
iu are the translational and rotational displacement 

of node i, respectively, which are the weighting average 
displacements of the reference boundary nodes associated with 
node i, as respectively defined in eq.(3) and eq.(4). The reference 
boundary nodes associated with node i are illustrated in Fig.1, 
which usually refer to the closest boundary nodes (e.g. p2, p4) of 
all boundaries and their neighbor nodes (e.g. p1, p3, p5, p6). iψ  
describes the relative position of node i from boundaries and 
controls the extent of boundary deformations transferred to 
volume nodes. The specific expression of iψ can be found in Ref. 
[15]. 

 
Fig.1An illustration of the reference boundary nodes of node i: 
the closest boundary nodes ( p2, p4) and their neighbor nodes 

( p1, p3, p5, p6) 
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The weighting factor αij  is a reciprocal function of the 

distance from node i to boundary node j. [Ri] is the rotation 
matrix of the reference boundary nodes associated with node i 
[15], [I] is the identity matrix. Nc is the number of the reference 
boundary nodes associated with node i. uij is the displacement of 
the reference boundary node j associated with node i. xi is the 
position vector of node i. xij is the position vector of the reference 
boundary node j associated with node i. The st and sr 
( 0st > , 0sr > ) are the scaling exponential factors of 
translation and rotation components in eq.(2), respectively. These 
factors adjust the contributions of translation and rotation 
components to the displacement of each node. They also 
determine how and how far the boundary displacement spreads 
into the computational domain. Therefore, the values of st and sr 
directly affect the ability and quality of mesh deformation, and 
are very important to the performance of the IDW method. The 
two factors were previously given by several numerical attempts, 
and they were only specified for some typical cases in literature. 
Allen [16] proposed 2 , 5sr st≤ ≤  as the range of optimal 
parameter values, and st = 2.0 and sr = 4.0 were chosen for all 
numerical examples. While Ji [21] suggested , 2sr st ≥  and 

62 jsr ψ−=  which are different from Allen. Moreover, the ranges 
and values mentioned above cannot generally ensure the best 
mesh deformation in various numerical applications. Systematic 
and comprehensive investigations on the parameters have not 
been found yet. 
 
In this work, the optimal values of st and sr in the IDW method 

are investigated systematically and comprehensively using 
numerical simulations, which involve different mesh types, 
boundary structures and deformation patterns. As the far field is 
assumed to be large enough in the numerical simulation, the 
impact of the shape of the far field boundary is not discussed in 
this work. In order to illustrate mesh deformation clearly, 
numerical simulations in two-dimension (2D) are carried out in 
this work. The optimal parameters are finally determined by 
considering both the ability and quality of mesh deformation. The 
results should be guidance to the parameter selection in the IDW 
method, and is therefore very important to the performance of the 
IDW method. 
 
Optimal parameters of rotation and translation 
 
In order to investigate the optimal parameters of rotation and 
translation systematically, three different boundary shapes and 
mesh types have been considered. Effects of the parameter values 
on both the quality and ability of mesh deformation have been 
discussed. The boundary structures in the examples in this 
section are rotated clockwise at their centers or aerodynamic 
centers, five degrees at each step. The optimal parameters for 
various boundary shapes have been investigated at first. 
Afterwards, the optimal parameters for the three mesh types have 
been studied as well. 

 

Three typical boundary shapes with different aspect ratios 
are considered. The initial computational meshes are 
unequal and unstructured, as shown in Fig.2, which 
illustrates the boundary structures of a NACA0012 airfoil, 
a rectangle and a square. 

 

Fig.2 Initial computational meshes for different boundary shapes 

 
Fig. 3 The deformed meshes in the maximum rotation degrees 

 

 
Fig. 4 The relationship between the parameters and the 
maximum rotation degree in different boundary shapes 

 



 
(a) The average and minimum mesh quality (st=1) 

 

 
 (b) The average and minimum mesh quality (sr=2) 

Fig. 5 The relationship between various st, sr and the mesh 
quality in different boundary shapes (rotational 

defromation) 
 

Fig.5 (a) demonstrates the minimum and average quality of the 
computational meshes for different boundary shapes at st = 1. As 
the aspect ratio increasing, the variation between mesh qualities 
with different sr is decreased. The maximum rotation degrees are 
acquired at sr = 2 for all the three boundary shapes. Therefore, 
considering the mesh quality and maximum rotation degree 
simultaneously, the mesh deformation ability and quality are 
optimal at st = 1 and sr = 2. Fig.5 (b) depicts the minimum and 
average quality of the computational meshes for different 
boundary shapes when sr = 2. The variation of average mesh 
quality between different st is small. The optimal mesh 
deformation quality also has been achieved at st = 1 and sr = 2. 
Therefore, the mesh deformation ability and mesh quality are 
optimal at st = 1 and sr = 2 for all three boundary shapes.  
 

Subsequently, similar to the research of different boundary 
shapes, the effects of st and sr on the mesh deformation in 
different mesh types are investigated. Three typical mesh types 
which are structured mesh, equal unstructured mesh (the sizes of 
mesh elements are almost identical) and unequal unstructured 
mesh (the sizes of mesh elements are unequal) are considered. 

In conclusion, the optimal parameters of rotation are sr = 2 and 
[1,2]st∈ , which are independent of mesh type and structure 

boundary. 

The optimal parameters of the combination of translation 
and rotation  

Translation and rotation are two basic deformation forms in 2D, 
and any other deformation forms can be considered as a 
combination of translation and rotation. The effect of the 
parameters on the ability and quality of deformation in combined 
movements are also studied to determine the optimal parameters 
for general deformation forms.  

The relationship between the parameter values and mesh 
deformation ability of two combined movements is depicted in 
Fig.6. In case (a), the boundary rotates 2° around the center and 
translates one unit upwards in each deformation step; In case (b), 
the boundary rotates 2° and translates 5 units length in each 
deformation step. The boundary structure is the same as in Fig.2 
(b). The maximum rotation degrees are 180° and 50° for case (a) 
and (b), respectively. 

 

  
(a) Rotates 2°and translates a unit length per step 

 
(b) Rotates 2°and translates 5 units length per step 

Fig.6The relationship between parameter values and the 
mesh deformation ability in combined movements 

 

Fig.6 (a) shows that the largest rotation angle is reached at st = 1 
and sr = 2. Note that the relationship between the parameters and 
maximum rotation degree is consistent with that of rotation. 
Therefore, the optimal parameters of combined movements 
approximate to that of rotation when the weight of rotation is 
larger than translation. 

Fig.6(b) shows that the maximum rotation angle achieves the 
optimal value at st = 1, and keeps increasing with sr increasing. 
Moreover, the relationship between the parameters and maximum 
rotation degree is consistent with that of translation. Therefore, 
the optimal parameters of combined movements approximate to 
that of translation when the weight of translation is larger than 
rotation. 

Similar to the investigations of translation and rotation, the 
optimal parameters of various boundary shapes and mesh types 
are studied as well. The results demonstrate that the optimal 
parameters of combined movements are related to those of 
rotation and translation individually, and are independent of 
boundary structures and mesh types. 



In conclusion, the optimal parameters of combined movements 
fall in the range between that of translation and rotation 
individually. Specifically, the optimal parameters approximate to 
that of translation when the weight of translation is larger than 
rotation, and approximate to that of rotation when the weight of 
rotation is larger than translation. 

Conclusions and discussion 
 
The optimal parameters of the mesh deformation method based 
on the IDW interpolation are investigated, and the two basic 
deformation forms of rotation, translation and their combination 
are studied. The numerical simulations demonstrate that the 
optimal parameters are independent of boundary shape and mesh 
type, but depends on deformation form. The optimal deformation 
ability and mesh quality of rotation are achieved at sr = 2 and 

[1,2]st∈ , which is different from the Ref. [21] in which 2st ≥  

and 
62 jsr ψ−= . The optimal deformation ability and mesh 

quality of translation are reached when st=1 and sr tends to 
infinite. The structured and equal unstructured meshes are 
suggested to weaken the translation component in rotation to 
achieve optimal mesh deformation ability. 

Although only two deformation forms, i.e. rotation and 
translation, have been investigated in this work, other 
deformation forms can be decomposed into these two basic forms, 
and their optimal parameters can be determined by the optimal 
parameters in rotation and translation individually. The optimal 
value of st is in the range of [1, 2] for both translation and 
rotation. The rotation component is essential for rotation and 
could be ignored for translation, in other words, the value of sr is 
small for rotation while tends to infinite for translation. For the 
clarity and simplicity of 2D meshes, the optimal parameters in 
2D mesh deformation have been studied. However, the optimal 
parameters in 2D can be used as reference values for the optimal 
parameters in 3D due to the fact that the IDW method is 
independent of mesh connectivity. These results should be 
guidance to the parameter selection in the IDW method, and is 
therefore very important to the performance of the IDW method. 
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